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Abstract—Recently, cross-domain collaborative filtering
(CDCF) has been widely used to solve the data sparsity
problem in recommendation systems. Therein, the dual-target
cross-domain recommendation becomes a research hotspot,
which aims to improve the recommendation performance of
both target and source domains. Most existing approaches tend
to use fixed weights or self-attention in a single representation
space for the bi-directional inter-domain transfer of the user
representation. However, a single representation space leads
to limited representation capability, which makes the transfer
of the user representation coarse-grained and inaccurate. In
this paper, Multi-head Attention Based Dual Target Graph
Collaborative Filtering Network (MA-DTGCF) is proposed.
The core of the model is the bi-directional transfer graph
convolution layer, consisting of a graph convolution layer and
a bi-directional transfer layer based on a multi-head attention
mechanism. The latter can achieve fine-grained and adaptive
transfer of user features in multiple representation subspaces.
It is worth noting that by stacking multiple bi-directional
transfer graph convolutional layers, we can get high-order user
and item features and achieve adaptive transfer of each order
user features. Experimental results on three real datasets show

This work is jointly sponsored by National Natural Science Foundation
of China (Nos. 62172249, 61973180), Natural Science Foundation of
Shandong Province (Nos. ZR2019MF014, ZR2021MF092). (Correspond-
ing author: Xu Yu)

that the proposed MA-DTGCF model significantly outper-
forms the state-of-the-art models in terms of HR and NDCG.

Index Terms—Cross-domain collaborative filtering, Multi-
head attention, Graph neural network

I. INTRODUCTION

Recently, with the development of the internet, various

kinds of information are filling people’s lives. In order to

solve the problem of information overload, personalized

recommendation systems [1]–[3] are widely used in real

life and gradually become an integral part of the Internet,

such as the recommendation system in Taobao. The core of

the personalized recommendation system is to recommend

a set of products that users are likely to interact with, such

as clicking, buying, etc., by using the user’s historical data.

Collaborative filtering [1], [4], [5] is the most widely used

model in the personalized recommendation, which learns

the model by mining the relationship between users and

items in historical interaction data. Its core is to learn the

implicit features of users and items with the help of their

relationships. Then, it makes recommendation prediction

based on the implicit features. However, in real life, users
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often do not like ratings, and the number of users and items

is huge. Whatever collaborative filtering algorithm will face

a very serious data sparsity problem.

Cross-domain collaborative filtering(CDCF) is the most

commonly used method to solve the data sparsity problem,

which transfers the information from the source domain

with relatively dense data to the target domain with sparse

data to improve the recommendation performance of the

target domain. It consists of single-target and dual-target

CDCF. For single-target CDCF [6]–[8], the optimization

objective is to improve the recommendation performance

of the target domain. But, some researchers have found

that the information in the target domain can also be

used to improve the recommendation performance of the

auxiliary domain, i.e., the dual-target CDCF [2], [9], [10]. It

achieves the simultaneous improvement of recommendation

performance in both domains through bi-directional transfer

of information. Most existing dual-target CDCF approaches

[2], [10] tend to use fixed weights or self-attention in

a single representation space for the bi-directional inter-

domain transfer of the user representation. However, The

representation capability of single feature space is limited

and coarse-grained [11], which can only represent users and

perform feature transfer at a single perspective and lead to

inaccurate calculation of user feature transfer weights or

attention mechanisms. Also, They use same transfer strategy

to transfer each order user features in user-item graph.

The amount of transferable information in each order user

features is different, So, the same transfer strategy to each

order user features is inappropriate. Finally, it may hurt

performance of target domain.

To address the limitations of the existing dual-target

cross-domain recommendation models, this paper pro-

poses a Multi-head Attention Based Daul Target Graph

Collaborative Filtering Network(MA-DTGCF). First, we

construct user-item heterogeneous graphs for each of the

two domains. Then, the bi-directional transfer graph con-

volution layer is used to aggregate the information on

two heterogeneous graphs respectively and transfer the

features of the common users from two domains in multiple

representation subspaces. To get the high-order features of

users and items and achieve adaptive transfer of each order

user features, the bi-directional transfer graph convolution

layer will be stacked multiple times. Finally, the click-

through rate prediction of the two domains is performed.

The main contributions of this paper are as follows:

1) We design a bi-direction transfer graph convolution

layer, which can aggregate information in the user-

item graph of each domain respectively and achieve

fine-grained, adaptive transfer of user features in

multiple representation subspaces.

2) By stacking multiple bi-directional transfer graph

convolutional layers, we can get high-order user and

item features and achieve adaptive transfer of each

order user features.

3) Adequate experiments are conducted on three real

datasets, and the experiment results show that MA-

DTGCF significantly outperforms the state-of-the-art

model in terms of HR and NDCG.

The remainder is organized in the following. Related

work will be reviewed in Section II. The details of the

model will be given in Section III. Section IV includes a

detailed experimental procedure and a comparison analysis.

Finally, we present the conclusion in Section V.

II. RELATED WORK

A. Cross-domain Collaborative Filtering

Existing cross-domain collaborative filtering models can

be classified into single-target and dual-target cross-domain

collaborative filtering. For single-target cross-domain col-

laborative filtering models, Berkovsky et al. proposed

Neighbor-based CDCF (N-CDCF) [6], and Singh and Gor-

don proposed CMF [7], both of which achieved improved

recommendation performance through shared users/items.

Hu et al. proposed CoNet [8], which establishes cross-

connections between the networks of two domains. Yu et al.

proposed PPCDHWRec [12] model to transfer user latent

features and achieve privacy protection for user raw ratings.

For the dual-target cross-domain collaborative filtering, Zhu

et al. proposed the DTCDR [13] model, a preliminary

study of the user feature fusion approach in the dual-

target scenario. By applying the graph collaborative filtering

model with good performance in a single domain to the

dual-target cross-domain recommendation scenario, Zhao et

al. proposed PPGN [9]. For the negative transfer problem

in PPGN, Liu et al. proposed the bi-directional transfer

graph collaborative filtering model BITGCF [10]. Unlike

the fixed weights fusion of features in BITGCF, Zhu et

al. proposed GA-DTCDR [2], a dual-target cross-domain

recommendation model based on self-attention mechanism

and graph representation learning. Both BITGCF and GA-

DTGCF tend to use fixed weights or self-attention in

a single representation space for the bi-directional inter-

domain transfer of the user representation. However, a

single representation space leads to limited representation

capability, which makes the transfer of the user representa-

tion inaccurate.

B. Graph Collaborative Filtering

By mining the information on the user-item hetero-

geneous graph and modeling the higher-order interaction

between users and items, the relationship between users and

items can be fully explored. Earlier models like ItemRank

[14] used a label propagation mechanism to propagate user

preference scores directly on the graph by encouraging

connected nodes to have similar labels. Then, with the

proposal of graph neural networks [15], many researchers

used it in recommender systems due to its ability to mine

higher-order interactions in graphs. Berg, Kipf, and Welling

proposed GC-MC [16], a collaborative filtering model based
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on graph convolutional neural networks. For large-scale

scenarios, Ying et al. proposed PinSage [17]. Recently,

Wang et al. proposed a graph collaborative filtering model

NGCF [18] with user-item feature interaction terms. He et

al. demonstrated that the weight matrices and nonlinear part

in the traditional graph collaborative filtering model are

worthless for collaborative filtering, and proposed Light-

GCN [1] that achieves the simultaneous improvement of

recommendation performance and computational efficiency.

III. THE PROPOSED ALGORITHM

In this section, the Multi-head Attention Based Dual

Target Graph Collaborative Filtering Network (MA-

DTGCF) will be introduced. First, we define the dual-

target cross-domain recommendation problem. Then, we

will present the main structure of the model. Finally, the

components and details of the model will be presented in

the remaining subsections.

A. Problem Definition

The scenario in this paper is a dual-target cross-domain

recommendation scenario with fully overlapping users and

no overlapping items. We consider two domains A and

B. Let U denotes the set of users, and the length of

U is m. Let the set of items in the two domains be

IA and IB , respectively, and the lengths of them are nA

and nB . Let YA = [yuAiA ]m×nA
∈ {0,1}m×nA and

YB = [yuBiB ]m×nB
∈ {0,1}m×nB denote the implicit

feedback matrices, where “1” means that the interaction

between a user and a item is observed, and “0” otherwise.

In this paper, we convert the traditional rating prediction

into a click-through rate prediction problem and use the

implicit feedback information for Top-K recommendation.

The optimization objective is to improve the recommen-

dation performance of both domains simultaneously, i.e.,

dual-target cross-domain recommendation.

B. Overview of MA-DTGCF

To address the inaccurate transfer of the user represen-

tation and transfer each order user features by different

strategies, this paper proposes a Multi-head Attentio Based

Dual Target Graph Collaborative Filtering Network (MA-

DTGCF). The structure of the model is shown in Fig. 1.

Firstly, we use the embedding layer to generate the vector

representation of users and items. Then, to learn more accu-

rate user and item representations and transfer user features

appropriately, we construct user-item heterogeneous graphs

GA = (VA, EA) and GB = (VB , EB) for domain A and

domain B, respectively, where VA and VB are the sets

of nodes, EA and EB are the sets of edges. The sets of

nodes include all users and items in domain A and B,

respectively. If a user has a positive interaction with a item,

there will be an edge between them. And, The bi-directional

transfer graph convolution layer, which consists of a graph

convolution layer and a bi-directional transfer layer, is used

to aggregate the information on two heterogeneous graphs

respectively and transfers the features of the common users

from two domains in multiple representation subspaces.

To get the high-order features of users and items and

achieve adaptive transfer of each order user features, the bi-

directional transfer graph convolution layer will be stacked

multiple times. Finally, we use a output layer based on

multi-layer neural networks to predict the the probability

that the given user-item pair is a positive interaction in the

two domains. The details of our model will be presented in

subsequent subsections.

Fig. 1. The structure of MA-DTGCF

C. Embedding Layer

The computation of the model requires a vectorized

representation of users and items. We design the embedding

layer to map the user ID and item ID into embedding

vectors eudom ∈ R
d and eidom ∈ R

d, where dom = {A,B}
is the domain identity, and d is the dimension of the

embedding vector. The formulations of the embedding layer

are as follows,

e
(0)

udom =
(
Wdom

U

)T
IDdom

u

e
(0)

idom
=

(
Wdom

I

)T
IDdom

i

(1)

where Wdom
U and Wdom

I are weight matrices, and IDdom
u

and IDdom
i denote the one-hot encoding of user u and item

i of the domain dom, respectively. In the end, we can get

the user and item embedding matrices Edom
U ∈ R

m×d and

Edom
I ∈ R

ndom×d in domain dom.

D. Graph Convolution Layer

The characteristics of users and items are often reflected

in their related users and items. So, we use a graph

convolution layer to mine the relationships between nodes
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within the domain. The following is an example of the

matrix form calculation process of graph convolution layer

in domain A. Let the initial node embedding matrix in

graph GA be E
(0)
A =

(
EA

U ⊕EA
I

) ∈ R
(m+nA)×d, and the

adjacency matrix of domain A is represented as follows,

MA =

(
0

(
YA

)
(
YA

)T
0

)
(2)

where 0 is a matrix with all zero elements, and MA ∈
R

(m+nA)×(m+nA) is a symmetric matrix. The degree matrix

of domain A is TA ∈ R
(m+nA)×(m+nA), which is a diag-

onal matrix, where TA
jj =

∑
i M

A
ij . The node embedding

representation of layer l be calculated as follows.

E
(l)
A =

((
TA

)− 1
2MA

(
TA

)− 1
2

)
E

(l−1)
A (3)

After the l − th layer of convolution, the user embedding

matrix is
(
EA

U

)(l)
= E

(l)
A [0 : m], i.e., the first m rows

of E
(l)
A . Similarly, The embedding matrix of the items is(

EA
I

)(l)
= E

(l)
A [m : m+ nA].

Then, we will input the users embedding to the l − th
bi-directional transfer layer. The transfer process of user

features is as follows,

[(ẼA
U )

(l), (ẼB
U )

(l)] = Transfer(l)((EA
U )

(l), (EB
U )

(l)) (4)

where Transfer(l) (·) is the multi-head attention based bi-

directional transfer layer of the l-th bi-directional trans-

fer graph convolution layer, which will be described in

detail in Section E. After transfer, the user embedding

matrix and item embedding matrix in the same domain

are reassembled into the node embedding matrix E
(l)
A =

[(ẼA
U )

(l)⊕(ẼA
I )

(l)] ∈ R
(m+nA)×d, which will be used in the

next bi-directional transfer graph convolution layer. After nl

layers of convolution, the final user and item embeddings

are calculated as follows,

EA = β0E
(0)
A + β1E

(1)
A + β2E

(2)
A + . . .+ βnl

E
(nl)
A

EA
U = EA[0 : m]

EA
I = EA[m : m+ nA]

(5)

where β0 = β1 = ... = βnl
= 1

nl+1 is the weight of each

layer, E
(l)
A is the output of l − th bi-directional transfer

graph convolution layer.

E. Bi-directional Transfer Layer

The limited representation capability of single feature

[11] leads to inaccurate calculation of user feature transfer

weights or attention mechanisms, which may hurt the

recommendation performance. Moreover, as the order of the

interaction increases, the user features are more accurate,

the strategy of transfer should be different. Therefore, this

paper designs a bi-directional transfer module based on

the multi-head attention mechanism, which uses multiple

representation subspaces to represent the user in multiple

perspectives and performs attention calculation in each of

the multiple subspaces to achieve fine-grained and more

accurate transfer of user features.
1) Transfer in Single Representation Space: The multi-

head attention based transfer layer consists of multiple self-

attention based transfer units, and each unit transfer the

feature in its feature space. In the following, a single self-

attention based transfer unit is introduced. Let the features

of user u in layer l in domain A and domain B are e
(l)

uA ∈
R

d and e
(l)

uB ∈ R
d, respectively, and then we concatenate

them as the feature matrix E
(l)
u ∈ R

2×d of user u. The

calculation process of a single transfer unit is as follows,

Ẽ
(l)
u = Attention

(
Q

(l)
u ,K

(l)
u ,V

(l)
u

)

= softmax

⎛
⎜⎝

Q
(l)
u

(
K

(l)
u

)T

√
datt

⎞
⎟⎠V

(l)
u

Q
(l)
u = E

(l)
u

(
WQ

)(l)

K
(l)
u = E

(l)
u

(
WK

)(l)

V
(l)
u = E

(l)
u

(
WV

)(l)

(6)

where Ẽ
(l)
u is the feature matrix of user u after trans-

fer. Q
(l)
u ,K

(l)
u ,V

(l)
u ∈ R

2×datt are the query, key and

value matrices of user u at the l − th layer, respectively.(
WQ

)(l)
,
(
WK

)(l)
,
(
WV

)(l) ∈ R
d×datt are the weight

matrices of the single transfer unit at layer l. datt = d is

the feature dimension of user u after mapping, and
√
datt

is the normalization factor to avoid gradient vanishing.
2) Transfer in Multiple Representation Subspaces: Fea-

ture transfer in a single feature space is limited and coarse-

grained [11]. However, using multiple self-attention baed

transfer units to transfer user features in different feature

spaces can be better adapted to this complex scenario. For

the feature matrix E
(l)
u ∈ R

2×d of user u, the multi-head

attention transfer equation is as follows,

Ẽ(l)
u = MultiHead(E(l)

u )

= Concat
(
head

(l)
1 , . . . , head(l)

nh

) (
WO

)(l)

head
(l)
i = Attention

⎛
⎜⎜⎜⎝
Q(l)

u

(
WQ

)(l)
i

,

K(l)
u

(
WK

)(l)
i

,

V(l)
u

(
WV

)(l)
i

⎞
⎟⎟⎟⎠

(7)

where
(
WO

)(l) ∈ R
nhdatt×d is the weight matrix, and we

set datt = d/nh. nh is the number of feature spaces and

is even. This setting ensures that the computational loss of

multi-head attention based transfer is comparable to that

of a single tarnsfer unit. After completing the transfer, the

updated user features can be obtained as follows,

ẽ
(l)

uA = Ẽ(l)
u [0]

ẽ
(l)

uB = Ẽ(l)
u [1]

(8)

where Ẽ
(l)
u [0] and Ẽ

(l)
u [1] represent the 0th and 1st rows

of the updated user feature matrix. By using Eqs. (5-8)
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to transfer the features of each user in the user embedding

representation matrices
(
EA

U

)(l)
and

(
EB

U

)(l)
at layer l, i.e.,

the Transfer(l) (·) in Eq.(4), we can get the updated user

feature matrices (ẼA
U )

(l) and (ẼB
U )

(l), which will be used

in the information aggregation of the next bi-directional

transfer graph convolution layer.

F. Output Layer

After multiple bi-directional transfer graph convolution

layers, we obtain the final embedding of users and items.

Given that the traditional inner product prediction of prob-

ability is linear and its fitting ability is limited, this paper

will use neural networks for probability prediction. Then we

will introduce the probability prediction module in domain

A. The final embeddings of user uA and item iA are

represented as euA and eiA . We concatenate them into a

vector euAiA ∈ R
2d as the input of the neural network,

and a pyramid shape neural network [19] is used to predict

the probability. The computation process of probability

predictor PA is as follows,

f (0) = euAiA

f (1) = relu
(
f (0)W

(1)

pA + b
(1)

pA

)

f (2) = relu
(
f (1)W

(2)

pA + b
(2)

pA

)
...

f (np) = sigmoid
(
f (np−1)W

(np)

pA + b
(np)

pA

)
ŷuAiA = f (np)

(9)

where WpA and bpA are the weights and biases, and relu,

sigmoid are activation functions. The probability predictor

PB of the domain B can be obtained, similarly.

G. Model Training

The performance of a deep learning model usually de-

pends on the quality of the loss function. A good loss

function can avoid the model from falling into a local

optimum and accelerate convergence. In this paper, we

use cross-entropy loss as the loss function for probability

prediction,

Ljoin = LA
y (ŷuAiA , yuAiA ) + LB

y (ŷuBiB , yuBiB ) + λ‖θ‖2

Ly (ŷui, yui) = −
∑

(u,i)∈D

yui log ŷui + (1− yui) log (1− ŷui)

(10)

where D ∈ Y + ∪ Y − is the set of training samples, Y +

and Y − are the set of positive and negative samples in

a domain, λ is the coefficient of the regularization, and

θ =
{
E

(0)
A ,E

(0)
B ,WTransfer,WPA ,WPB , bPA , bPB

}
is

the set of parameters, where WTransfer is the weights of

bi-directional transfer layer. Adam [20] is selected in this

paper to optimize the parameters of the model, which is

a stochastic gradient descent based optimizer that allows

the model to converge quickly at a large learning rate. The

MA-DTGCF algorithm is shown in Algorithm 1. Lines 4-14

is the process of bi-directional transfer graph convolution

layer, and output layer is denoted in lines 15-16.

Algorithm 1 MA-DTGCF
Input: The user-item heterogeneous graphs GA = (VA, EA) and GB =

(VB , EB), initial node embedding matrices E
(0)
A and E

(0)
B , adjacency matrices

MA and MB , degree matrices TA and TB , the positive sample set Y+
A and

negative sample set Y−A , the positive sample set Y+
B and negative sample set

Y−B , the number of graph convolution layers nl.

Output: θ =
{
E

(0)
A ,E

(0)
B ,WTransfer,WPA ,WPB , bPA , bPB

}
1: repeat
2: for each

(
uA, iA, yuAiA

)
∈ Y+

A ∪ Y−A do

3: Randomly select a sample
(
uB , jB , yuBjB

)
∈ Y+

B ∪ Y−B
4: for l = 1 : nl do

5: E
(l)
A =

((
TA

)− 1
2 MA

(
TA

)− 1
2

)
E

(l−1)
A

6: E
(l)
B =

((
TB

)− 1
2 MB

(
TB

)− 1
2

)
E

(l−1)
B

7:
(
EA

U

)(l)
= E

(l)
A [0 : m],

(
EB

U

)(l)
= E

(l)
B [0 : m]

8: Get
(
ẼA

U

)(l)
and

(
ẼB

U

)(l)
by Eq. (4).

9: E
(l)
A [0 : m] =

(
ẼA

U

)(l)
, E

(l)
B [0 : m] =

(
ẼB

U

)(l)

10: end for
11: EA = β0E

(0)
A + β1E

(1)
A + β2E

(2)
A + . . . + βnl

E
(nl)
A

12: EB = β0E
(0)
B + β1E

(1)
B + β2E

(2)
B + . . . + βnl

E
(nl)
B

13: EA
U = EA[0 : m],EA

I = EA[m : m + nA]
14: EB

U = EB [0 : m],EB
I = EB [m : m + nB ]

15: ŷuAiA = PA
(
euA , eiA

)
16: ŷuBjB = PB

(
euB , ejB

)
17: Calculate the loss Ljoin by Eq. (10)
18: Update parameter θ
19: end for
20: until Convergence
21: Return θ

IV. EXPERIMENT

First, we introduce the basic setup of the experiment

in Section A, and then Section B will show the results

of comparing the model in this paper with the state-of-

the-art methods. Section C analyzes the effectiveness of

the transfer layer. Finally, Section D analyzes the impact

of key parameters in the model on the recommendation

performance.

A. Experimental Setup

1) Experiment Dataset: The experimental data was ob-

tained from the real dataset Amazon (2018) [21], which

includes items from 24 categories. The raw data of this

dataset contains 233.1 million ratings and textual infor-

mation such as user reviews and item descriptions. We

extracted three category combinations for the experiments,

which are Books & Movies and TV(MT), Cell Phones and

Accessories(CPA) & Electronics, and Clothing, Shoes and

Jewelry(CSJ) & Sports and Outdoors(SO). We will use the

rating data corresponding to these three data sets for the

experiments in this paper. First, we convert the explicit

rating data into implicit feedback data, i.e., if a user has

a rating for a item, its corresponding label is 1. Then, we

removed users with less than 5 ratings and items with less

than 10 ratings in each category. Finally, the data related

to the common users of each combination were extracted
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as the final experimental data. Detailed statistics about the

data are shown in Table I.

TABLE I
STATISTICAL INFORMATION OF THE DATASET

Dataset #Users #Items #Interactions Density
Books 11524 34485 145155 0.037%

MT 11524 33493 311540 0.081%
Electronics 38127 43460 442366 0.027%

CPA 38127 20467 310234 0.040%
SO 14020 37893 166480 0.031%
CSJ 14020 13170 109309 0.059%

2) Evaluation: We use the leave-one-out method, which

is widely used in recent work, to valid and test our model.

The training, validation, and test data are partitioned in the

same way as in Ref. [5]. Hit Ratio (HR) and Normalized

Discounted Cumulative Gain (NDCG) [22] will be used to

evaluate the rank performance of the model. For a user,

HR is used to measure the proportion of positive samples

appearing in the recommendation list among all positive

samples, which is either 0 or 1 since a user has only one

positive sample, and NDCG is used to measure the quality

of the ranking. We will calculate the HR and NDCG of all

users separately during validation or testing, and take the

average value as the final result.

3) Compared Methods: We compare MA-DTGCF with

seven models, including two single-domain recommenda-

tion models, two single-target cross-domain recommenda-

tion models, two dual-target cross-domain recommendation

models. The details of these models are as follows.

• NeuMF [5] is a single-domain recommendation model

that uses generalized matrix decomposition and a

multi-layer perceptron to learn the complex interac-

tions between the user and item features.

• LightGCN [1] is a single-domain graph collaborative

filtering model that removes the activation function

and the transformation matrices from the original GCN

[15] model.

• CMF [7] is a single-target cross-domain recommen-

dation model that transfers information by learning

shared user features through a collaborative factoriza-

tion of the rating matrices in both domains.

• CoNet [8] is a single-target cross-domain recom-

mendation model that transfers information by cross-

connecting the layers of neural networks and uses joint

learning to optimize the model.

• GA-DTCDR [13] is a dual-target cross-domain model

that uses Node2Vec [23] to learn the embeddings of

users and items, and uses element-wise attention [24]

to achieve bi-directional transfer of user features.

• BITGCF [10] is a dual-target cross-domain model,

and the intra-domain and inter-domain information ag-

gregation models are designed to achieve bi-directional

information transfer.

4) Parameters Setting: The random initialization of the

hidden features in all compared methods obeys Gaussian

N (0, 0.01), and the learning rate is set to 0.01 except

for CMF which is set to 0.1. All of the key parameters

of the compared methods are tuned by cross-validation.

The number of layers of NCF in NeuMF is set to 3,

and the dimensions of hidden features in each layer are

64→32→16. For LightGCN, we use the code provided

by the authors for our experiments but modified its loss

function to cross-entropy, and we set the number of graph

convolution layers as 3, the message dropout as 0, the

hidden feature dimension as 64, the regularization coeffi-

cient λ as 0.00001. CoNet is set according to the optimal

parameters in the original paper, and the dimensions of

each layer are set to 64→32→16→8. GA-DTCDR uses

the review information of users and items in the Amazon

dataset as text features, and the hidden feature dimension is

set to 64. The number of convolutional layers in BITGCF

is set to 3, and the coefficients αA = 0.4 and αB = 0.7.

For MA-DTGCF, we tune the number of convolution layers

in the range of [1, 2, 3, 4, 5], the number of attention heads

in the range of [1, 2, 4, 6, 8], the regularization coefficient

in the range of [0.000001, 0.00001, 0.0001, 0.001, 0.01]

and the dimensionality of features in the range of [16, 32,

64, 128]. The number of layers of the probability predictor

is set to 3, and if the dimensionality of the features is

64, the dimensions of each layer are 128→64→1. The

optimal parameters were obtained by cross-validation, and

the optimal parameters of three combinations are same,

d = 64, nl = 3, nh = 4, λ = 0.00001. The convergence

condition of the model is that the loss value decreases by

less than 0.001 for 5 epochs.

B. Performance Comparison
For the single-domain recommendation model in the

comparison methods, we will train the model separately

within a single domain and show the test results for each

domain separately. For the single-target cross-domain rec-

ommendation models, we train the model using data from

both domains, but only show the test results for the target

domain (the domain with relatively sparse data). For the

dual-target cross-domain recommendation models, we train

the model using data from both domains, test it in both

domains, and present the results of both domains. From

Table II, we have the following observations:

1) Among the single-domain methods, LightGCN per-

forms significantly better than NeuMF and even out-

performs the two single-target cross-domain recom-

mendation algorithms CMF and CoNet, which shows

the importance of mining the higher-order interactions

between users and items to improve the recommen-

dation performance.

2) In the single-target cross-domain recommendation

model, the neural network-based CoNet performs bet-

ter than CMF because the neural network model has a

better fitting ability compared to matrix factorization.
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TABLE II
THE EXPERIMENTAL RESULTS (HR@10 & NDCG@10)

Dataset Metrices
Single Domain Single Target Dual Target Ours

NeuMF LightGCN CMF CoNet GA-DTCDR BITGCF MA-DTGCF

Books
HR 0.3016 0.4383 0.3258 0.4213 0.4416 0.4456 0.4747

NDCG 0.2332 0.3204 0.2556 0.2924 0.3288 0.3314 0.3601

MT
HR 0.5049 0.5899 — — 0.5936 0.5966 0.6325

NDCG 0.2886 0.3725 — — 0.3756 0.3776 0.4033

Electronics
HR 0.3681 0.4402 0.3869 0.4165 0.4465 0.4437 0.4781

NDCG 0.2168 0.2694 0.2457 0.2543 0.2701 0.2646 0.2963

CPA
HR 0.4073 0.4546 — — 0.4615 0.4597 0.4904

NDCG 0.2396 0.2963 — — 0.2983 0.2977 0.3329

SO
HR 0.3823 0.4406 0.3852 0.4275 0.4448 0.4453 0.4793

NDCG 0.2265 0.2754 0.2589 0.2664 0.2801 0.2762 0.3065

CSJ
HR 0.3157 0.3706 — — 0.3755 0.3788 0.4158

NDCG 0.1893 0.2511 — — 0.2537 0.2557 0.2881

3) The dual-target cross-domain models are all based

on graph models, and their recommendation perfor-

mance is better than all single-domain and single-

target cross-domain recommendation models in both

the auxiliary and target domains. The combination of

graph representation learning and bi-directional infor-

mation transfer is very important for the improvement

of recommendation performance.

4) The recommendation performance of MA-DTGCF is

significantly better than all the comparison models,

which indicates that adaptive transfer of user features

in multiple representation subspaces and adaptive

transfer of each order user features play an important

role in improving the recommendation performance.

C. Effectiveness of Transfer Layer

To prove the effectiveness of the proposed bi-directional

transfer layer, we replace the transfer layer in MA-DTGCF

with the transfer layer proposed in GA-DTCDR and BIT-

GCF to get the models GA-DTGCF and BI-DTGCF. The

parameters of the transfer layer are consistent with the

GA-DTCDR and BITGCF, and the rest of the parameters

are consistent with MA-DTGCF. Figure 2 shows the re-

sults on the test datasets under different transfer layers.

From the above figure, it can be seen that the proposed

multi-head attention based bi-directional transfer layer has

obvious advantages in both HR and NDCG. This fully

demonstrates that using multiple representation subspaces

to represent the user in multiple perspectives, performing

attention calculation in each of the multiple subspaces

and learning different transfer strategies in different bi-

directional transfer graph convolution layers can achieve

fine-grained and more accurate transfer of user features.

D. Impact of Key Parameters

The key parameters in the model are the number of

attention heads in the bi-directional transfer layer and

the number of layers of the bi-directional transfer graph

convolution layer. Fig. 3 shows the impact of the two

Fig. 2. Results of different transfer layers

key parameters on the recommended performance in test

datasets, and the basic parameter settings for the two sets

of experiments are the optimal parameter settings. As shown

in Fig. 3(a) and 3(b), the recommendation performance

of the model gradually improves as the attention head

increases. This indicates that more accurate feature transfer

can be achieved as the number of feature spaces increases,

but the model performance decreases after the number of

attention heads exceeds 4, which indicates that more feature

space for feature transfer is not better. It can be seen from

Fig. 3(c) and 3(d) that the recommendation performance

increases with the increase of the number of layers of the

bi-directional transfer graph convolution layer, however, the

performance decreases after the number of layers exceeds

3. It can be seen that the higher the interaction order is not

better.

V. CONCLUSION

In this paper, the Multi-head Attention Based Dual Target

Graph Collaborative Filtering Network (MA-DTGCF) is

proposed. We design a multi-head attention based bi-

directional transfer graph convolution layer. Transferring
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Fig. 3. Impact of the key parameters

user features in multiple representation subspaces and learn-

ing different transfer strategies in different bi-directional

transfer graph convolution layers can achieve fine-grained

and more accurate transfer of user features. Ultimately, MA-

DTGCF shows significant improvement compared to the

state-of-the-art methods on several real data sets, which

fully proves the effectiveness of MA-DTGCF. But, in this

work, we ignore the enhancement of the item features in the

dual-target cross-domain recommendation scenario, which

will be our research priority in the future.
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